Atividades lúdicas no ensino de Física

SILVÂNIA SOUSA DO NASCIMENTO
Cecimig / Faculdade de Educação, UFMG
PAULO CEZAR SANTOS VENTURA
Coordenação de Ciências, CEFET/MG

RESUMO: O artigo discute o conceito de lúdico e sua aplicação ao ensino de física. É apresentado o resultado de uma atividade lúdica desenvolvida durante a XV META Mostra Específica de Trabalhos e Aplicações (META), realizada no CEFET-MG, em setembro de 1993, em que os alunos foram desafiados a resolver problemas experimentais comuns em sala de aula e nos livros didáticos. Aceito o desafio, eles deveriam explicar as leis físicas envolvidas nos problemas experimentais. Apresenta-se uma análise das explicações dadas pelos desafiados.

1. INTRODUÇÃO

Muito se tem falado sobre a dimensão lúdica do ensino. Tanto no ensino fundamental quanto no ensino médio, parece de claro consenso a necessidade de se trabalhar esse aspecto do ensino. A proposta de potencializar tal dimensão, em qualquer tipo de atividade, implica a necessária revisão do conceito da função e das possibilidades do elemento lúdico, não só na perspectiva dos primeiros anos da infância, mas também na formação integral do cidadão.

Em geral, o conceito de lúdico, abrangendo vários campos, é apresentado como algo dotado das seguintes características:

1. ser agradável e proporcionar prazer;
2. ter uma motivação intrínseca: não há objetivos extrínsecos;
3. promover o entretenimento, o engajamento e o envolvimento dos participantes.

No âmbito das considerações antropológicas, o lúdico é algo que ultrapassa o campo de interesses diretamente materiais ou pessoais e pode atingir finalidades culturais. Muitas das atividades humanas inseridas no domínio da estética, por exemplo, apresentam qualidades lúdicas que não são identificadas. Interessante destacar que a palavra "Estética" deriva do grego aísthesis, que significa sensação, sentimento. Atualmente, para a filosofia, a Estética representa a "Ciência do belo", a disciplina que estuda a sensação, o sentir. Um dos aspectos da reação estética não se refere à qualidade de um evento, mas à nossa percepção do mesmo.

Nesse sentido, realçamos que a dimensão lúdica da educação também está ligada à percepção e representação dos eventos. Trabalharemos com o potencial lúdico existente na interação do indivíduo com os objetos que compõem o mundo físico, natural e tecnológico do qual faz parte. Segundo (Moura1993), o campo de ensino de Ciências é extremamente favorável à promoção de um "impulso lúdico", através da conjugação harmônica dos elementos sensíveis e racionais da própria ciência.

Atividades lúdicas como, por exemplo, jogos, desenvolvem nas crianças o respeito pelo outro, a organização de grupos, a formulação de regras e de regras e de uma pequena base de conhecimentos de domínio de habilidades e conteúdos. Entretanto, qualquer atividade lúdica pode se transformar em uma tarefa enfadonha e penosa se não considerarmos certos aspectos: primeiro, para a criança, a atividade lúdica tem um caráter moral. O jogo é...
um juramento a si mesmo e aos outros de respeitar certas regras. É como um trabalho, pode vir a ser fatigante. Assim é conveniente propormos atividades dentro do grupo de interesse dos participantes. O jogo é uma atividade social, portanto é importante destacarmos os resultados e socializarmos as soluções apresentadas pelos participantes. Em segundo lugar, nem sempre o atrativo à atividade lúdica é seu aspecto estético. Muitas vezes, representados pela atividade lúdica, o desafio e os obstáculos a superar e são os elementos mais valorizados.

2. JOGOS, BRINCADEIRAS E DESAFIOS

É muito difícil precisar em que faixa etária o homem apresenta interesse pelas atividades lúdicas. Château, (1987) define algumas atividades de jogos classificados por faixa etária. Segundo sua classificação, os primeiros tipos de jogos que aparecem não têm regras e são puramente funcionais. A criança repete gestos espontâneos algumas vezes por imitação. Paralelo ao desenvolvimento infantil, surgem os jogos hedonísticos que se caracterizam pela busca de um prazer como, por exemplo, um ruído ou uma sensação táctil. A exploração de si mesmo e de outro, bem como a manipulação, são coloçados como o jogo com o novo. Estes, por imitação, apresentam os primeiros esboços do jogo humano. Ainda sem o aspecto da regra, um gênero especial de jogos desenvolvidos pelas crianças, são os de destruição, desordem e euforia. Solitários, ou em grupos, representam um desejo de afirmação e de domínio de habilidades. Com a regra, essa afirmação adquire outros elementos como nos jogos de imitação e de construção. Na idade escolar, os jogos começam a ter regras arbitrárias que evoluem, chegando aos jogos figurativos e sociais, assim como os jogos de valentia, que são poucos observados entre as meninas. A partir dos 10 anos, esses tipos de jogos dão origem às competições e a jogos coletivos.

Tabela 1 - Classificação de jogos por faixa etária

<table>
<thead>
<tr>
<th>JOGOS/IDADE</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNCIONAIS</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEDONÍSTICOS</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COM O NOVO</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE DESTRUÇÃO</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE DESORDEM</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIGURATIVOS</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE CONSTRUÇÃO</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REGRAS ARBITRÁRIAS</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE VALENTIA</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE COMPETIÇÃO</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DANÇA</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CERIMÔNIAS</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Para o ensino de Ciência, que trata do conhecimento referente ao mundo físico, um dos grandes problemas enfrentados é o da evolução da explicação causal dos eventos. Os indivíduos estabelecem uma relação com os eventos que implica estruturar um processo de construção do conhecimento sobre o evento. Essa construção está ligada à percepção e a representação dos eventos. As atividades lúdicas apresentam contribuições para o desenvolvimento do espírito crítico, da imaginação e da faculdade de sistematizar, através de previsões, elementos tão necessários à elaboração do conhecimento científico. Instrumentos como o calendario, a luneta e o giroscópio inspiraram sistematizações científicas. Vários experimentos de eletrostática eram usados como brincadeiras de feiras livres na Renascença. As possibilidades de ganho no ganho estabeleceram bases para o cálculo de probabilidades. Há muitos outros exemplos que poderíamos listar.

Não devemos esquecer a função das atividades lúdicas de promover o desenvolvimento do gesto infantil, de suas habilidades artísticas, de suas formas de representação do mundo percebido, de suas soluções criativas para as situações apresentadas. Estes são alguns dos obje-
ativos de uma educação científica que pretende possibilidade aos cidadãos uma leitura do mundo.

3. ANÁLISE DE UMA ATIVIDADE LÚDICA

As situações de ensino informal são frequentes, mas poucas vezes são registradas. Em setembro de 1993, durante a Mostra Específica de Trabalhos e Aplicação (META) do Centro Federal de Educação Tecnológica de Minas Gerais os visitantes da Mostra, alunos e não alunos, foram desafiados a resolver situações que envolviam conceitos básicos de Física. Os desafios eram questões a serem resolvidas experimentalmente como: "Com um areo e uma esfera é possível traçar um reto? Como elevar uma massa presa em um fio sem tocá-la?", etc. Também era solicitada a explicação para a solução da questão. Durante a Mostra, alunos do segundo ano do Curso de Informática do CEFET-MG aplicaram as atividades lúdicas em pessoas de uma larga faixa etária. Analisamos os resultados em uma das situações: "Dois corpos de massas iguais são superpostos: como retirar o inferior sem tocar no superior?" Os desafiados receberam dois pequenos cilindros e uma régua, colocados sobre uma mesa. Experimentalmente, é um desafio fácil. Apenas 8,3% das pessoas que o aceitaram não acertaram o procedimento experimental.

Para resolver a situação-problema, podemos tomar dois caminhos:

- não aceitar o desafio: suspender a de cima e tirar a de baixo (30,0, T)*
- ou iniciar as tentativas: aplicar uma força apenas na rodinha de baixo (17, M, S); bater com força na rodinha de baixo (18, F, S).

Com relação à explicação do fenômeno físico, podemos aglutinar as soluções apresentadas em dois grupos de respostas: Um grupo, 41,7%, daquelas que justificaram o procedimento utilizando o conceito de inércia.

Por inércia, a rodinha de cima tender a ficar no lugar (21, F, T).
A segunda esfera por inércia tende a ficar parada (15, M, S).

Mas que inércia é essa?
O conceito de inércia é uma das novidade
des do século XVI. A "dinâmica" - a ciência da força e do movimento, batizada por Leibniz (1646-1716), anos após a publicação do Princípio de Newton (1642-1727) - é distinta desde a antiguidade de todas as considerações sobre a mudança de posição de um corpo. Por este príncípio, os cientistas concebiam que o corpo poderia manter-se em movimento uniforme e retílineo sem precisar de um motor ou força externa. Assim, existe uma espécie de equivalência entre o movimento retílineo e uniforme e o repouso, sendo ambos um "estado", segundo Descartes (1596-1650). Ao contrário da Física aristotélica que considera o movimento um "processo" distinto do repouso, a nova Física irá considerá-lo um "estado" especial do movimento (Cohen, 1983).

Outro grupo de respostas (50,3%) aponta para a presença de uma força externa ao sistema, que modificava as condições de equilíbrio estático e é identificada de muitas maneiras:

- usar a régua, rapidez do movimento com a régua sobre a rodinha de cima (22, M, S).
- dar uma pancada na rodinha de baixo, a rodinha de cima, obrigatoriamente, fica no lugar (26, M, S).
- Bater na rodinha de baixo com a régua. A força aplicada na base destoca a rodinha de baixo. A rodinha de cima permanece no lugar porque ela não foi atingida pela régua. (47, M, T).
- dar uma rasteira na rodinha de baixo. A pancada foi rápida e a rodinha de cima não sentiu a rasteira, ficando no mesmo lugar. (14, M, S).
- Dar um toque rápido na rodinha com força. A força e o jeito com que você atinge a rodinha de baixo faz com que a de cima só desça, porque ela perde seu apoio (32, F, T).

Um sistema físico pode ser constituído de várias partes, cada qual com sua massa e aceleração (Holton e Brush, 1973). A força resultante é a soma vetorial de todas as forças que atuam em cada uma das partes. Na questão, um corpo 1 de massa m, repousa sobre um corpo 2 de massa m, que, por sua vez, repousa sobre uma superfície (Ver figura 1). Neste caso, relativamente simples, existem atuando, no sistema de dois corpos, cinco forças: duas forças no corpo 1 (a gravitacional para baixo e a de sustentação, para cima, exercida pelo corpo 2); três forças no corpo 2 (a gravitacional para baixo, a de sustentação, para cima, exercida pela mesa sobre o qual o sistema repousa, e uma força exercida para baixo pelo corpo 1). Estando o sistema em repouso, pela 2ª lei de Newton, podemos escrever, para os dois corpos:
Para o corpo 1, N1 - P1 = 0 e, para o corpo 2, N2 - P2 - F1 = 0. A soma dessas forças ainda será nula no caso do sistema entrar em movimento sobre a mesa, pois são todas verticais.

Todos aqueles que acertaram o desafio experimental, aplicaram uma força relativamente grande na rodinha de baixo. No caso da força ser pequena, os dois corpos adquirem a mesma aceleração. Mas as respostas das forças estão longe de explicar o fenômeno ocorrido. Surgem, entre os dois corpos, ao se aplicar uma força externa (a "pancadinha"), forças de contato que um exerce sobre o outro. São forças de atrito, estático ou cinético, caso haja repouso ou movimento relativo entre os dois. Essas forças de atrito atuam nos dois corpos e são iguais e opostas, formando um par de ação e reação, de acordo com a Terceira Lei de Newton (Ver a Figura 2).

4. CONSIDERAÇÕES FINAIS

Como se vê, a explicação do desafio está na segunda lei de Newton, não satisfazendo a resposta que "por inércia o corpo de cima tende a ficar no lugar" (21.F.T). E voltando à nossa questão, que inércia é essa? No senso comum, o conceito de inércia está ligado ao de repouso. Encontramos no Novo
Dicionário Aurélio (Ferreira, 1985) a seguinte definição para o verbete "inércia": Falta de ação, de actividade; letargia, torpor. E é exatamente essa definição do senso comum que pessoas, mesmo com segundo e até terceiro grau de escolaridade, estão utilizando na solução do desafio. A compreensão da primeira lei implica uma maneira diferente de analisar o movimento. O estado de repouso, assumido como dinamicamente equivalente ao movimento retilíneo uniforme, é um grande obstáculo ao senso comum. O princípio da inércia é colocado relacionado aos estados de equilíbrio estático independentes do referencial tomado pelo observador. Está af presento o repouso absoluto de Aristóteles. Outro elemento ausente é a conceituação de força como variação da quantidade de movimento, relacionando assim a força ao intervalo de tempo de interação.

Atividades como as descritas, quando analisadas pelos alunos, possibilitam o surgimento de todas as questões discutidas. Muitos dos alunos são capazes de resolver a questão aplicando as Leis de Newton, motivados por desafios experimentais ou técnicos. Questões como essas fazem parte do cotidiano dos alunos em sala de aula. Especificamente, o desafio acima consta do livro texto adotado no ensino de Física de segundo grau em diversas escolas, inclusive no CEFET-MG (Luz e Alvarez, 1993), como problema a ser resolvido. O processo tradicional de ler o livro e resolver os problemas leva apenas a uma memorização momentânea, pouco contribuindo para a assimilação dos conceitos experimentais que são a essência fundamental das leis físicas. Assim a atividade lúdica, o jogo, o desafio podem ser utilizados como elementos motivadores de explicitação e superação de obstáculos para a compreensão de conceitos. Em uma escola formadora de técnicos, tais situações informais de ensino devem ser melhor debatidas.

REFERÊNCIAS BIBLIOGRÁFICAS

[1] MOURA, Dá cio G. - A dimensão do lúdico no ensino de Ciências; atividades práticas como elemento de realização lúdica, tese de doutoramento, FEUSP, São Paulo, 1993